2019

MATHEMATICS

(Major)

Paper: 3.2

(Linear Algebra and Vector)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

1. Answer the following as directed: 1×7=7

(a) If
$$V = R^n(R)$$
, then
$$W = \{(v_1, v_2, ..., v_n) : v_1 + v_2 + ... + v_n = 1\}$$
 is a subspace of V .

- (b) If $v_i = v_j$ for some $i \neq j$, then the sequence $v_1, v_2, ..., v_n$ of vectors in a vector space is
 - (i) linearly independent
 - (ii) linearly dependent
 (Choose the correct option)
- (c) Consider the complex field C which contains the real field R. Show that $\{1, i\}$ is a basis of the vector space C over R, where $i = \sqrt{-1}$.
- (d) Suppose $T: \mathbb{R}^5 \to \mathbb{R}^2$ is a linear transformation defined by T(x) = Ax for some matrix A and for each x in \mathbb{R}^5 . How many rows and columns does A have?
- (e) For a linear operator (matrix) T, the scalar 0 is an eigenvalue of T if and only if T is singular.

(Write True or False)

(f) Find the minimal polynomial m(t) of the following matrix:

$$M = \begin{bmatrix} -5 & 4 \\ 2 & 9 \end{bmatrix}$$

- (g) If $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then $x \mapsto Ax$ is a linear transformation on C^2 , where C is the complex field. Show that $v = \begin{bmatrix} 1 \\ -i \end{bmatrix}$ is an eigenvector of A.
- 2. Answer the following questions:

2×4=8

(a) Determine if the columns of the matrix

$$A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$

are linearly independent.

- (b) Let $M_{2\times 2}$ be the vector space of all 2×2 matrices, and define $T: M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A + A^T$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Show that T is a linear transformation.
- (c) Let $a_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $a_2 = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $b_1 = \begin{bmatrix} -7 \\ 9 \end{bmatrix}$, $b_2 = \begin{bmatrix} -5 \\ 7 \end{bmatrix}$, and consider the bases for R^2 given by $E = \{a_1, a_2\}$ and $F = \{b_1, b_2\}$. Find the change-of-coordinate matrix from E to F.

(d) If λ is an eigenvalue of a linear operator T: V → V, then prove that the set E_λ of all eigenvectors belonging to λ is a subspace of V.

3. Answer any one part :

5

- (a) Let V_1 and V_2 be vector spaces over the same field F. For any linear transformation $T: V_1 \to V_2$, prove that $r(T) \le \min(\dim V_1, \dim V_2)$, where r(T) denotes the rank of T.
- (b) Define the dual space V^* of a vector space V and prove that if V is the finite-dimensional vector space over a field F, then for any $u(\neq 0)$ in V there exists $g \in V^*$ such that $g(u) \neq 0$.

4. Answer the following questions:

(a) If $u_1, u_2, ..., u_n$ are non-zero linearly dependent vectors in a vector space V over a field F, then prove that for some i, $2 \le i \le n$, u_i is a linear combination of its predecessors $u_1, u_2, ..., u_{i-1}$ and the subspace spanned by $\{u_1, u_2, ..., u_n\}$ is same as that spanned by $\{u_1, u_2, ..., u_{i-1}, u_{i+1}, ..., u_n\}$.

Or

Suppose V is a finite dimensional vector space over a field F and U is a subspace of V. Prove that there is a subspace W of V such that $V = U \oplus W$.

10

(b) (i) If a linear transformation $T: V \to V$ has n distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$, then prove that V has an ordered basis $\{u_1, u_2, ..., u_n\}$ such that the matrix of T related to this basis is

$$\begin{bmatrix} \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

(ii) State the existence and uniqueness theorem of solution of a system of linear equations. Determine the existence and uniqueness of the solution of the system whose augmented matrix after row reduced is

Or

What do we mean by the minimal polynomial of a matrix (linear operator)? Let T be the operator on R^2 which projects each vector onto the x-axis, parallel to the y-axis:

$$T(x, y) = (x, 0)$$

Show that T is linear. What is the minimal polynomial for T?

GROUP-B

(Vector)

(Marks: 40)

5. Answer the following questions:

 $1 \times 3 = 3$

- (a) Prove that $\vec{a} \cdot (\vec{a} \times \vec{b}) = 0$.
- (b) If \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors, then define the reciprocal vector of \vec{a} .
- (c) If the four vectors \vec{a} , \vec{b} , \vec{c} , \vec{d} are coplanar, then show that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$
- 6. Find the constant λ such that the following vectors are coplanar:

$$\vec{a} = 2\vec{i} - \vec{j} + \vec{k}, \ \vec{b} = \vec{i} + 2\vec{j} - 3\vec{k},$$

$$\vec{c} = 3\vec{i} + \lambda \vec{j} + 5\vec{k}$$

- 7. Answer the following questions:
 - (a) Prove that for any three vectors \vec{a} , \vec{b} , and \vec{c} , $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$.

(b) Prove that the necessary and sufficient condition for a vector $\vec{v}(t)$ to have a constant direction is

$$\vec{v} \times \frac{d\vec{v}}{dt} = \vec{0}$$

5

5

(c) Prove that

$$\operatorname{curl}(\overrightarrow{A} \times \overrightarrow{B}) = (\overrightarrow{B} \cdot \nabla) \overrightarrow{A} - \overrightarrow{B} \operatorname{div} \overrightarrow{A} - (\overrightarrow{A} \cdot \nabla) \overrightarrow{B} + \overrightarrow{A} \operatorname{div} \overrightarrow{B} = 5$$
Or

Taking $\vec{f} = x^2 y \vec{i} + xz \vec{j} + 2yz \vec{k}$, verify that $\operatorname{div}(\operatorname{curl} \vec{f}) = 0$.

- 8. Answer the following questions:
 - (a) (i) If $\vec{r} = a\cos t \vec{i} + a\sin t \vec{j} + at\tan \alpha \vec{k}$, then find $\left| \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right| \text{ and } \left(\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right) \cdot \frac{d^3\vec{r}}{dt^3}$
 - (ii) A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 5, where t is the time. Find the components of its velocity and acceleration at t = 1 in the direction $\vec{i} + \vec{j} + 3\vec{k}$.

Or

- (i) If \vec{a} , \vec{b} , \vec{c} be three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$, then find the angles which \vec{a} makes with \vec{b} and \vec{c} , where \vec{b} and \vec{c} being the parallel.
- (ii) If $\frac{d\vec{u}}{dt} = \vec{w} \times \vec{u}$, $\frac{d\vec{v}}{dt} = \vec{w} \times \vec{v}$, then show that $\frac{d}{dt}(\vec{u} \times \vec{v}) = \vec{w} \times (\vec{u} \times \vec{v})$.
- (iii) Prove that div $\vec{r} = 3$.
- (b) If $\vec{F} = y\vec{i} x\vec{j}$, then evaluate $\int_{C} \vec{F} \cdot d\vec{r}$ from
 - (0, 0) to (1, 1) along the following paths C:
 - (i) The parabola $y = x^2$
 - (ii) The straight lines from (0, 0) to (1, 0) and then to (1, 1)
 - (iii) The straight line joining (0, 0) and (1, 1). 4+3+3=10

Or

If $\vec{F} = y\vec{i} + (x - 2xz)\vec{j} - xy\vec{k}$ and S is the surface of the sphere

$$x^2 + y^2 + z^2 = a^2$$
, $0 \le x$, y , $z \le a$

then evaluate $\iint_{S} \vec{F} \cdot \vec{n} \, d\vec{S}$, where \vec{n} is a unit vector along the outward down normal to the sphere S.

* * *